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We consider oscillating vortices induced in a rotating liquid by excitation of its free 
oscillations [1-3]. The conditions for vortex formation, both quantitative and qualitative, 
depend on the specifics of excitation and on which modes result for the given excitation 
source and geometry of the container. Nevertheless the hope is to find some general features 
of the evolution of the flow induced by the excitation of different free oscillations and 
perhaps to be able to predict the formation of vortices in a rotating liquid for different 
initial perturbations. The present paper describes the first experimental search for these 
general features. 

The apparatus is shown schematically in Fig. i. A water-filled and hermetically sealed 
transparent cylindrical container 1 is mounted vertically on a rotating platform coaxial with 
the container. The bottom of the container 2 is made of elastic resin. Free oscillations 
of the rotating liquid are excited by a generator consisting of hemispheres 3 mounted on a 
disk 4. The generator is supported on a shaft 5 coaxial with the container and which can 
rotate relative to the container and can move in the vertical direction. 

The liquid in the container was first brought into rigid-body rotation with angular 
velocity ~ and the generator of the oscillations was brought into a steady state with angu- 
lar velocity m. Then the generator was raised upward by a height h from the position where 
the hemispheres touch the resin membrane bottom. The hemispheres therefore pressed into 
the bottom and produced bulges on it, which move with respect to the container with the re- 
quired velocity. This method of exciting inertial oscillations was used in [4]. It has an 
advantage compared to other methods in that it avoids direct viscous interactions between 
the generator of the excitations and the liquid and therefore does not create undesirable 
secondary flows. 

The flow field was studied by visual observation. The flow was made visible by adding 
to the water polymer spheres with small negative buoyancy (p = 1.00-1.05 g/cm 3) of radii 
less than 1 mm. 

With the above method of exciting inertial oscillations, if we do not attempt to de- 
scribe the exact form of the elastic bottom, the problem is characterized by eight parameters. 
They are the parameters ~, ~, and h introduced above, the height H and radius R of the con- 
tainer, the kinematic viscosity v of the liquid, the number of perturbing bodies M and their 
distance b from the axis of the system. Note that the elastic nature of the resin membrane 
and the radius of curvature of the perturbing bodies do not appear in the above set of param- 
eters. In addition it is assumed that for M > 1 all bodies are located at the same distance 
from the axis. From the above minimum set of eight parameters a total of six dimensionless 
independent parameters can be constructed: H/R, b/R, h/R, M, the relative excitation fre- 
quency f = 1 - m/~ and the Reynolds number Re, which will be discussed below. 

The free oscillations of the rigidly rotating liquid satisfy linearized equations of 
motion and can be written as combinations of normal modes [5]: 

r 4 ] ( 1 )  v = I .  ( a ~ r / R ) s i n  (k .sz lH) exp (ira (0 --  ~t)), k . j =  a .  s - f f[m-~ - -  I ] - ' i " .  

Here r, 0, z are the usual cylindrical coordinates, v is the z-component of the velocity, 
is the frequency of the wave, m = i, 2,... is the angular wave number, I m is the modified 
Bessel function of the first kind of order m, j is the number of zeros of the radial compo- 
nent of the velocity on O< r ~ R, and f = 1 - ~/~. The condition of nonpenetration of fluid 
at r = R leads to an equation for ~ ~ ~mj 
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Fig. i 

which together with (I) determine the dependence ~(k) (k ~ kmj). The condition of nonpene- 
tration at z = 0 and z = H implies that an integral number n of half-waves must fit within the 
height of the container, i.e., k = ~n (n = I, 2 .... ). The set of three integers (m, j, n) 
specifies the normal mode with dimensionless relative frequency fmjn = 1 - Wmjn/Q. For all 
modes Ifmjnl < 2/m. 

The following fixed parameters were used in the experiments: R = 25 cm, b/R = 0.78, and 
the radius of curvature of the hemispheres was 4.5 cm. The fundamental modes of excitation 
were (3, i, n) with n = 1-5 and f > 0. The restriction on R was due to technical factors but 
the other restrictions were adapted only to reasonably limit the scope of the study. The study 
of the problem for other values of the parameters will be the subject of future experimental 
work. 

Oscillating vortices analogous in structure and behavior to those described in [1-3] 
formed when the above modes were excited in the liquid. But differences were observed, ob- 
viously resulting from the geometry of the inertial wave. For example, in [i] vortices tended 
to form in the center of the container whereas in our case they formed near the sides of the 
container. This is not unexpected, since it was pointed out in [i~ that vortices form in 
the regions of maximum vertical velocity in the wave. The maxima for the (3, i, n) modes lie 
near the sides of the container. Another difference is the tilt of the axis of the vortex 
and its precession with the frequency of the wave. This effect is most extreme for small 
wavelength and results from the fact that different parts of the vortex are carried off dif- 
ferently by the wave. For excitation of modes with n > i, n-member vortices are formed 
where neighboring half-wave sections of the vortex axis are tilted in opposite directions with 
respect to the vertical, recalling a "snake". The motion of the liquid in the vortices is com- 
pletely analogous to that described in [i]. 

The primary interest of the work is the dependence of the formation time of an oscilla- 
ting vortex on the different parameters of the problem and the conditions for which pertur- 
bations of the rotating liquid do not lead to strong vortices, since the results of the study 
might be usable for tornado prediction. It was shown in [i, 2] that tornadoes may form when 
free oscillations of a parent mesocyclone are excited by different factors, such as active 
convection, deformation of the mesocyclone by a background shear flow, atmospheric wave motion, 
and the interaction of the mesocyclone with irregularities on the earth's surface. In order 
to be able to predict tornadoes reliably it must be determined if tornadoes can form when a 
particular mesocyclone interacts with a particular topography and if so, how much time is 
required? The time required for the formation of a vortex is a very important parameter, 
since in natural conditions the time of interaction of a mesocyclone with mountains or hills 
on the earth's surface is limited because of the motion of the mesocyclone. After learning 
how to estimate the vortex formation time for an arbitrary mesocyclone and knowing the direc- 
tion and speed of the latter, one may be able to more accurately predict the time and place 
of formation of a tornado. Hence the main focus in the present paper is to find the condi- 
tions for the formation of vortices and the vortex formation time. 

A difficulty in measuring the time to form oscillating vortices is that there do not 
exist methods of measuring and analyzing the type of extremely inhomogeneous and unsteady 
three-dimensional flow produced in the experiments. The only available method was visual 
observation, which is simple and effective, but subjective. 

The essence of the method is briefly as follows. By means of multiple observations of 
vortex formation the clearest and most reliably detectable phase was identified and the time 
required for this phase to develop from the time of introduction of the perturbation in the 
fluid was measured with a stopwatch. This phase was taken to be the instant when the vortex 
first appears as a local twisted jet with obvious retrogressive motion. Obviously this defi- 
nition is not completely objective because it does not include any quantitative characteristics 
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and it is probably difficult to understand by someone who has never observed the formation of 
an oscillating vortex. However, excitation of different inertial modes produces vortices 

different in size, structure, intensity, and oscillation frequency. A simple unified quan- 
titative criterion cannot be established without at the same time losing the qualitative 
similarity. 

To increase the reliability of the measurements of the formation time of oscillating 
vortices, a double timing method was used in which the instant at which the required phase 
of a nascent vortex appears is measured first and then the time at which the existence of 
at least one vortex is certain is measured next. A small difference in the two measured 
times indicates satisfactory results and the amount of work to obtain data for the statistical 
analysis of the data can be reduced. Another advantage of this technique is that pronounced 
beats occur in the flow when the difference between the excitation frequency and the required 
normal frequency is small. The beats show up as follows. After introducing the perturbation 
one first observes vortex precursors of different durations in which one or in more vortices 
form and complete several oscillations. Then a pause occurs during which they do not oscil- 
late and seem to practically disappear. After the pause the vortices form again and reach 
high intensities. In a number of cases vortex precursors lasting approximately one vortex 
oscillation period were observed. In this case the second measured time often was quite 
later than the first and either the excitation frequency was corrected or the measurements 
were taken more carefully or a large number of measurements was taken for the statistical 
analysis of the data. 

As noted above, the main focus of the present paper is the vortex formation time. As 
a function of the excitation frequency f this quantity has a sharp local minimum at the 
resonance point. It was first necessary to determine how accurately must the required fre- 
quency f be maintained and how stable must it be in order to obtain reliable results. There- 
fore, we first measured the dependence of the resonance region for the different modes on h/R. 
The resonance region of mode (m, j, n) is defined as the interval of excitation frequencies 
f about the natural frequency fmjn inside which the vortex formation time varies by not more 
than one period of oscillation of the vortex. We note that random measurement errors are 
determined by the behavior of the vortex and by the details of the detection method and in 
most cases are of the same order, although there were cases of very reliable detection of 
vortices, when the measurement errors were much smaller. 

Figure 2 shows the experimental dependence of the width of the resonance region Af on 
h/R for different modes and experimental conditions: a) mode (3, I, i), H = 18.4 cm, T = 
2.99 sec, M = 3; b) mode (3, i, i), H = 18.4 cm, T = 3.00 sec, M = i; c) mode (3, I, i), 
H = 8.6 cm, T = 4.81 sec, M = 3; d) mode (3, i, 3), H = 18.4 cm, T = 2.99 sec, M = 3; e) 
mode (3, i, 3), H = 18.4 cm, T = 4.81 sec, M = 3; f) mode (3, i, 2), H = 18.4 cm, T = 2.99 
sec, M = 3. The hemispheres on the generator disk were separated by 120 ~ which is the 
optimum arrangement for excitation of modes of the third angular harmonic. 

We conclude from the data of Fig. 2 that for sufficiently large h the width of the 
resonance region Af increases linearly with increasing h/Ro The straight lines on graphs 
a-f were constructed from 6, 4, 3, 5, 3, and 4 points, respectively. At small h/R the de- 
pendence deviates from the linear law and in cases d-f the width of the resonance region 
actually increases with decreasing h/R. In simple oscillating systems this effect occurs 
because of energy dissipation and so it is reasonable to suppose that viscous friction is 
the cause here as well. 

The effect of viscosity on the excitation of inertial waves is parametrized by the 
Reynolds number for the problem. We start from the formula Re = u~/v, where v is the kine- 
matic viscosity, u is the typical velocity, and ~ is the minimum characteristic length scale 
over which the velocity u occurs. For the modes considered here we take ~ = %/2 (%/2 = H/n 
is half the wavelength) and as u we take the velocity of the fluid around the mound produced 
on the bottom of the container, which is f~b in the azimuthal direction. Since the flow can 
be inviscid, the translational velocity induced by the perturbation is approximately f~bMh/R. 
We finally obtain the Reynolds number Re = f~bMh~/(2vR) which involves the characteristics 
of both the perturbation and the wave. 

It follows from Fig. 2 that the behavior of the width of the resonance region becomes 
anomalous when the Reynolds number Re constructed above is less than the critical value Re... = 
(2.3 • 0.2).i0 s. For Re less than approximately 0.3Re, oscillating vortices do not occur" 
in the flow because of viscous suppression of the inertial mode. 
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Taking into account the excitation method and the universality of Re,, one can construct 
for each inertial mode the quantity h,/R bounding the region of linear dependence of Af on 
h/R from the left. The quantity h,/R is 0.025 • 0.002; 0.073 • 0.007; 0.059 • 0.006; 0.05 • 
0.005; 0.079 • 0.008; 0.036 • 0.004 for cases a-f of Fig. 2, respectively. For a-e these 
values accurately reflect the transition to subcritical dependence, while for case f the 
calculated value of h,/R appears to be a bit too small. In the opinion of the author this 
disagreement is not caused by errors in the above discussion, but is associated with the 
nature of the excitation of the (3, i, 2) mode. Note that for cases a and d, with similar 
experimental conditions, the slopes of the straight lines are similar (0.52 and 0.45), where- 
as for case f the slope is more than twice as large (i.i) for the same conditions. The 
anomalous behavior of modes with an even number of half-wavelengths will be discussed further 
below. 

The Reynolds number defined above and its critical value are universal for all modes 
with an odd number of half-wavelengths n. But the parameter space of the problem has not 
been fully explored and the formula for Re and hence the critical value will be corrected 
below. 

The Re number introduced above is mode-dependent, since it can be constructed for each 
of the possible modes using the mode characteristics. Even assuming that the perturbation 
excites all modes equally, Re will be very different for different modes. Since Re deter- 
mines the degree of viscous suppression of the mode, for a fixed amplitude and excitation 
frequency (h and f) only a finite set of modes is actually excited and this set can be very 
limited because modes with high m are not excited because of the restriction Ifmjnl < 2/m 
and modes with high j and n are suppressed by viscosity, since the oscillation cell is small. 
Because the number of excited modes is therefore small, conditions can be found such that 
mode mixing practically does not occur; this was done here. 

The dimensionless vortex formation time t/T also ~depends on Re. This dependence was 
studied experimentally. Only the velocity of rotation of the container was varied and v 
was fixed (water) and h/R = 0.064. The results are shown by the points in Fig. 3 for the 
(3, i, I) mode with X/2 = 8.6, 12.3, 18.4, 27.35 cm and natural frequency f = 0.578, 0.514, 
0.412, 0.304 for a-d, respectively. 

The data shown in a-d of Fig. 3 can be approximated by the straight lines log (t/T) = 
-0.387 log Re + 2.42; -0.312 log Re + 2.16; -0.273 log Re + 1.90; -0.344 log Re + 2.23, which 
accurately reproduce the dependence of the vortex formation time on Re in the region studied. 
The coefficients were close for all of the lines but they will probably be different for 
different h/R, although the approximate dependence t/T ~ Re -I/3 will probably hold in this 
region of Re. Unfortunately, it was not possible to confirm this or to find the dependence 
of the coefficients of the straight lines on h/R because of the narrowness of the Reynolds- 
number region assumed. The Re region is bounded from below by the critical value Re, and 
is bounded from above by technical problems which would be difficult to overcome for the 
experimental setup used here. 

The next step is to find the dependence of the vortex formation time on the number of 
(identical) bodies used to excite waves. Measurements were taken for the (3, i, i) mode 
in a container with H = 18.4 cm (H/R = 0.736, f = 0.412). The number of bodies M did not 
exceed the number of the angular harmonic m = 3. The bodies were arranged at the same ra- 
dius from the axis of the container and separated by 120 ~ . In some of the runs one or two 
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of the bodies were removed from the generator. All of the runs were done for T = 2.99 sec. 
The vortex formation time was found to be proportional to I/M for excitation of the n = I 
mode. This result is illustrated in Fig. 4. Since for each group of three points the 
straight line constructed using least squares passes through the origin to within experi- 
mental error, the lines shown on the graph are constructed using least squares but are con- 
strained to pass through the origin. Lines 1-5 correspond to excitation amplitudes h/R = 
0.048; 0.064; 0.08; 0.i; 0.12. We note that the vortex formation time should increase if 
the hemispheres are arranged on the disk with a different azimuthal angular separation and 
the other conditions are the same. However, the dependence on the position of the bodies 
was not considered in the present paper. 

The quantity H/R is a dimensionless parameter of the problem. It would be interesting 
to know its effect on the vortex formation time. However, an arbitrary change in H/R leads 
to a different set of natural frequencies and for fixed f the resonance conditions for dif- 
ferent H/R either do not occur simultaneously or occur for waves with completely different 
geometries, which would strongly affect the vortex formation time. Hence, measurements of 
this kind would be pointless because it would not be possible to give a clear interpretation 
to the results. However, these difficulties can be avoided if for a fixed f, m, j we choose 
the height H such that inertial mode (m, j, n) with frequency fmjn = f occurs in the con- 
tainer. Then the modes will differ only by the number n of geometrically identical half- 
wave sections and the other factors will have no affect on the vortex formation time. Using 
this method three series of runs for (3, i, n) modes were performed to determine the vortex 
formation time as a function of n for different perturbation amplitudes h: I) f = 0.304, h/2 = 
27.3 cm, n = 1-3; 2) f = 0.514, h/2 = 12.3 cm, n = 1-5; 3) f = 0.618, %/2 = 6.1 cm, n = 1-3. 
In all runs the period of rotation of the container was T = 3.0 sec. For odd n the following 
result was obtained. For a given h/R the dimensionless vortex formation time t/T was less 
for n = i than for n = i + 2 by a quantity 2A independent of h/R and hence Re. The value of 
A per half-wavelength was calculated for each of the three cases as the average <ti+ 2 - ti>/2 , 
where t i is the dimensionless vortex formation time (t/T) for n = i. The difference was cal- 
culated using the t i values obtained experimentally for the same values of f, l, and h/R, 
but different n. Then the average was calculated over groups of differences obtained for the 
same f and X, successive odd values of n, and different h/R. The resulting A values for 
cases 1-3 are 3.48 • 0.17; 0.88 • 0.13; and 0.89 • 0.06, respectively. 

The difference in the vortex formation times for modes with n differing by unity is in 
general not the same for different h/R. However, in case 3 it is approximately the same, 
although the error is somewhat larger (A = 0.89 • 0.23). This tendency was not observed for 
longer wavelength modes, which once again illustrates the noted above fundamental difference 
between odd and even modes. 

Finally, we summarize the basic results of the present paper. 

I. We have constructed a Reynolds number for waves determining the viscous selection 
of inertial modes because of the suppression of small-scale oscillations. It leads to a suf- 
ficient condition for the nonappearance of oscillating vortices in a perturbed rotating 
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liquid, since if the largest mode number is less than the threshold for vortex formation 
then none of the free oscillation modes can produce vortices and therefore they will not 
exist. 

2. The dependence of the vortex formation time on the Reynolds number, number of per- 
turbing bodies, and the number n of half-wavelengths has been determined. The data show 
that if we extrapolate the vortex formation time into the region of large n and Re, the ex- 
pected vortex formation time will be less than the time necessary for arrival of the re- 
flected wave. This implies that a vortex can form not only in a standing wave, but also 
in a traveling wave and the existence of a reflecting surface is not essential. This ten- 
tative prediction requires direct experimental confirmation, but it implies the following 
for the atmosphere: 

i) when a mesocyclone interacts with an obstacle, a tornado can form after a time 
smaller than the period of rotation of the mesocyclone; for typical mesocyclone 
translational velocities an interaction time of this order can be guaranteed, even 
in the case of a small hill (change in height over the radius of the mesocyclone of 
100-500 m). A vortex is formed within a few kilometers of it, although the vortex 
is not necessarily destructive, since the factors determining the intensity of a 
vortex have not yet been studied; 

2) although multi-member vortices (n > i) are possible in nature, they are less probable 
because they require much more time to form; 

3) the presence of a reflecting inversion layer (the analog of the cover in the experi- 
ment) in the troposphere is not essential for vortex formation. 

The experimental data presented here obviously are not exhaustive for the problem. 
Further progress in the solution of this problem is outside the scope of this single paper. 
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